Skip to main content

updatePerceptronClassifier (Stream Processor)

This extension builds/updates a linear binary classification Perceptron model.

Syntax

streamingml:updatePerceptronClassifier(<STRING> model.name, <BOOL|STRING> model.label, <DOUBLE|FLOAT|INT|LONG> model.feature, <DOUBLE|FLOAT|INT|LONG> ...)
streamingml:updatePerceptronClassifier(<STRING> model.name, <BOOL|STRING> model.label, <DOUBLE> learning.rate, <DOUBLE|FLOAT|INT|LONG> model.feature, <DOUBLE|FLOAT|INT|LONG> ...)

Query Parameters

NameDescriptionDefault ValuePossible Data TypesOptionalDynamic
model.nameThe name of the model to be built/updated.STRINGNoNo
model.labelThe attribute of the label or the class of the dataset.BOOL STRINGNoYes
learning.rateThe learning rate of the Perceptron algorithm.0.1DOUBLEYesNo
model.featureFeatures of the model that need to be attributes of the stream.DOUBLE FLOAT INT LONGNoYes

Extra Return Attributes

NameDescriptionPossible Types
featureWeightWeight of the feature.name of the model.DOUBLE

Example 1

CREATE STREAM StreamA (attribute_0 double, attribute_1 double, attribute_2 double, attribute_3 double, attribute_4 string );

insert all events into outputStream
from StreamA#streamingml:updatePerceptronClassifier('model1', attribute_4, 0.01, attribute_0, attribute_1, attribute_2, attribute_3);

This query builds/updates a Perceptron model named model1 with a 0.01 learning rate using attribute_0, attribute_1, attribute_2, and attribute_3 as features, and attribute_4 as the label. Updated weights of the model are emitted to the OutputStream stream.

Example 2

CREATE STREAM StreamA (attribute_0 double, attribute_1 double, attribute_2 double,attribute_3 double, attribute_4 string );

insert all events into outputStream
from StreamA#streamingml:updatePerceptronClassifier('model1', attribute_4, attribute_0, attribute_1, attribute_2, attribute_3);

This query builds/updates a Perceptron model named model1 with a default 0.1 learning rate using attribute_0, attribute_1, attribute_2, and attribute_3 as features, and attribute_4 as the label. The updated weights of the model are appended to the outputStream.