updatePerceptronClassifier (Stream Processor)
This extension builds/updates a linear binary classification Perceptron model.
Syntax
streamingml:updatePerceptronClassifier(<STRING> model.name, <BOOL|STRING> model.label, <DOUBLE|FLOAT|INT|LONG> model.feature, <DOUBLE|FLOAT|INT|LONG> ...)
streamingml:updatePerceptronClassifier(<STRING> model.name, <BOOL|STRING> model.label, <DOUBLE> learning.rate, <DOUBLE|FLOAT|INT|LONG> model.feature, <DOUBLE|FLOAT|INT|LONG> ...)
Query Parameters
Name | Description | Default Value | Possible Data Types | Optional | Dynamic |
---|---|---|---|---|---|
model.name | The name of the model to be built/updated. | STRING | No | No | |
model.label | The attribute of the label or the class of the dataset. | BOOL STRING | No | Yes | |
learning.rate | The learning rate of the Perceptron algorithm. | 0.1 | DOUBLE | Yes | No |
model.feature | Features of the model that need to be attributes of the stream. | DOUBLE FLOAT INT LONG | No | Yes |
Extra Return Attributes
Name | Description | Possible Types |
---|---|---|
featureWeight | Weight of the feature.name of the model. | DOUBLE |
Example 1
CREATE STREAM StreamA (attribute_0 double, attribute_1 double, attribute_2 double, attribute_3 double, attribute_4 string );
insert all events into outputStream
from StreamA#streamingml:updatePerceptronClassifier('model1', attribute_4, 0.01, attribute_0, attribute_1, attribute_2, attribute_3);
This query builds/updates a Perceptron model named model1
with a
0.01
learning rate using attribute_0
, attribute_1
, attribute_2
,
and attribute_3
as features, and attribute_4
as the label. Updated
weights of the model are emitted to the OutputStream stream.
Example 2
CREATE STREAM StreamA (attribute_0 double, attribute_1 double, attribute_2 double,attribute_3 double, attribute_4 string );
insert all events into outputStream
from StreamA#streamingml:updatePerceptronClassifier('model1', attribute_4, attribute_0, attribute_1, attribute_2, attribute_3);
This query builds/updates a Perceptron model named model1
with a
default 0.1
learning rate using attribute_0
, attribute_1
,
attribute_2
, and attribute_3
as features, and attribute_4
as the
label. The updated weights of the model are appended to the outputStream.