Skip to main content

updateBayesianRegression (Stream Processor)

This extension builds/updates a linear Bayesian regression model. This extension uses an improved version of stochastic variational inference.

Syntax

streamingml:updateBayesianRegression(<STRING> model.name, <INT|DOUBLE|LONG|FLOAT> model.target, <DOUBLE|FLOAT|INT|LONG> model.feature, <DOUBLE|FLOAT|INT|LONG> ...)
streamingml:updateBayesianRegression(<STRING> model.name, <INT|DOUBLE|LONG|FLOAT> model.target, <INT> model.samples, <DOUBLE|FLOAT|INT|LONG> model.feature, <DOUBLE|FLOAT|INT|LONG> ...)
streamingml:updateBayesianRegression(<STRING> model.name, <INT|DOUBLE|LONG|FLOAT> model.target, <STRING> model.optimizer, <DOUBLE|FLOAT|INT|LONG> model.feature, <DOUBLE|FLOAT|INT|LONG> ...)
streamingml:updateBayesianRegression(<STRING> model.name, <INT|DOUBLE|LONG|FLOAT> model.target, <DOUBLE> learning.rate, <DOUBLE|FLOAT|INT|LONG> model.feature, <DOUBLE|FLOAT|INT|LONG> ...)
streamingml:updateBayesianRegression(<STRING> model.name, <INT|DOUBLE|LONG|FLOAT> model.target, <INT> model.samples, <STRING> model.optimizer, <DOUBLE|FLOAT|INT|LONG> model.feature, <DOUBLE|FLOAT|INT|LONG> ...)
streamingml:updateBayesianRegression(<STRING> model.name, <INT|DOUBLE|LONG|FLOAT> model.target, <INT> model.samples, <DOUBLE> learning.rate, <DOUBLE|FLOAT|INT|LONG> model.feature, <DOUBLE|FLOAT|INT|LONG> ...)
streamingml:updateBayesianRegression(<STRING> model.name, <INT|DOUBLE|LONG|FLOAT> model.target, <STRING> model.optimizer, <DOUBLE> learning.rate, <DOUBLE|FLOAT|INT|LONG> model.feature, <DOUBLE|FLOAT|INT|LONG> ...)
streamingml:updateBayesianRegression(<STRING> model.name, <INT|DOUBLE|LONG|FLOAT> model.target, <INT> model.samples, <STRING> model.optimizer, <DOUBLE> learning.rate, <DOUBLE|FLOAT|INT|LONG> model.feature, <DOUBLE|FLOAT|INT|LONG> ...)

Query Parameters

NameDescriptionDefault ValuePossible Data TypesOptionalDynamic
model.nameThe name of the model to be built.STRINGNoNo
model.targetThe target attribute (dependant variable) of the input stream.INT DOUBLE LONG FLOATNoYes
model.samplesNumber of samples used to construct the gradients.1INTYesNo
model.optimizerThe type of optimization usedADAMSTRINGYesNo
learning.rateThe learning rate of the updater0.05DOUBLEYesNo
model.featureFeatures of the model that need to be attributes of the stream.DOUBLE FLOAT INT LONGNoYes

Extra Return Attributes

NameDescriptionPossible Types
lossLoss of the model.DOUBLE

Example 1

CREATE STREAM StreamA (attribute_0 double, attribute_1 double, attribute_2 double, attribute_3 double, attribute_4 double );

insert all events into outputStream
from StreamA#streamingml:updateBayesianRegression('model1', attribute_4, attribute_0, attribute_1, attribute_2, attribute_3);

This query builds/updates a Bayesian Linear regression model named model1 using attribute_0, attribute_1, attribute_2, and attribute_3 as features, and attribute_4 as the label. Updated weights of the model are emitted to the OutputStream stream.

Example 2

CREATE STREAM StreamA (attribute_0 double, attribute_1 double, attribute_2 double, attribute_3 double, attribute_4 double );

insert all events into outputStream
from StreamA#streamingml:updateBayesianRegression('model1', attribute_4, 2, 'NADAM', 0.01, attribute_0, attribute_1, attribute_2, attribute_3);

This query builds/updates a Bayesian Linear regression model named model1 with a 0.01 learning rate using attribute_0, attribute_1, attribute_2, and attribute_3 as features, and attribute_4 as the label. Updated weights of the model are emitted to the OutputStream stream. This model draws two samples during monte-carlo integration and uses NADAM optimizer.